

# Table of contents

| Table | e of c | ontents                        | 1   |
|-------|--------|--------------------------------|-----|
| Revis | sion h | nistory                        | 2   |
| 1.0   |        | troduction                     |     |
| 2.0   | Sp     | pecifications                  | 4   |
| 3.0   |        | echanical Drawing              |     |
|       |        | Mechanical size                |     |
|       | 3.2    | Touch line pin definition      | 6   |
|       |        | Interface pin definition       |     |
|       | 3.4    | Connector specifications       | .10 |
| 4.0   | Dr     | ivers and utilities            | .11 |
|       | 4.1    | Drivers                        | .11 |
|       | 4.2    | Utilities                      | .11 |
| 5.0   | Ot     | hers                           | .12 |
|       | 5.1    | ROHS compliance                | .12 |
|       | 5.2    | EMC protection recommendations | .12 |
|       | 5.2    | Noise protection               | 12  |



# **Revision history**

| Rev. | Date        | Ву      | Summary                                      | Remark |
|------|-------------|---------|----------------------------------------------|--------|
| 1.0  | 2015/10/08  | Ken Hsu | 1. New release                               |        |
| 1.1  | 2016/02/22  | Ken Hsu | 1. Correct item 3.3 Interface pin definition |        |
| 1.2  | 2.016/05/11 | Ken Hsu | 1. Correct item 2.10 Operating temperature   |        |
|      |             |         | 2. Add item 2.12 Operating or Storage        |        |
|      |             |         | Humidity Range                               |        |
|      |             |         | 3. Add item 2.5 Firmware Resolution          |        |
| 1.3  | 2016/11/18  | Ken Hsu | 1. Correct item 3.3 Interface pin definition |        |
|      |             |         | 2. Add item 2.15 Watchdog Timer              |        |
| 1.4  | 2017/03/03  | Ken Hsu | 1. Correct item 2.0 Sampling rate ,change    |        |
|      |             |         | the unit from sps to Hz                      |        |
|      |             |         | 2. Add item 2.0 Response time                |        |
|      |             |         | 3. Correct item 3.3 Interface pin            |        |
|      |             |         | definition ,I2C SCL / SDA description        |        |
|      |             |         |                                              |        |



### 1.0 Introduction

The PenMount PM1711 control board is a high specification (Projected Capacitive Input, PCI) touch panel controller product introduced by PenMount. The PenMount PM1711 can be applied in the consumer, commercial and industrial fields.

The PenMount PM1711 provides three types of interfaces, USB \cdot I^2C UART and supports PCI touch panels sized from 15.6" to 24". The PenMount PM1711 also supports a wide range of operating systems such as Windows and Linux.

The PenMount PM1711 was developed based on Microchip microprocessors and is paired with PenMount's in-house hardware design and firmware algorithmic mechanism. It provides high performance computing and possesses excellent anti-noise capabilities.

There are four connectors on this board: 80Pin & 50 Pins ZIF connectors for PCI touch screen FPC cables, one USB connector for 4-pin USB cable (optional), and one I<sup>2</sup>C/UART connector for 7-pin I<sup>2</sup>C cable (optional)

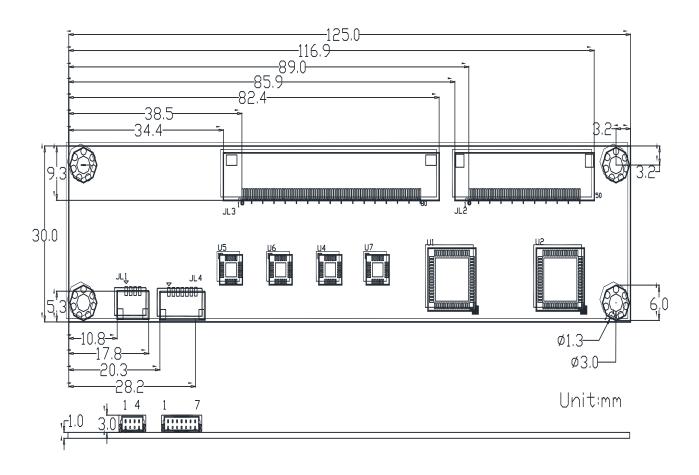


# 2.0 Specifications

| Parameter             |                  | feature                                                           |  |  |  |  |
|-----------------------|------------------|-------------------------------------------------------------------|--|--|--|--|
| Controller part r     | number           | PenMount P2-08 x 2pcs                                             |  |  |  |  |
| Number of sens        | ing line         | 44                                                                |  |  |  |  |
| Number of drivi       | ng line          | 76                                                                |  |  |  |  |
| Supporting touc       | h panel          | Projected capacitive type, from 15.6" to 24"                      |  |  |  |  |
| Interface             | USB              | Full-speed, 12Mbps                                                |  |  |  |  |
|                       | UART             | 38400 baud rate / 8bit data / non parity / one stop bit / non-PnP |  |  |  |  |
|                       | I <sup>2</sup> C | Slave, 400 kHz                                                    |  |  |  |  |
| ADC resolution        |                  | 10bits (Typical)                                                  |  |  |  |  |
| Firmware resolu       | tion             | 2048 x 2048 (Typical)                                             |  |  |  |  |
| Response time         |                  | Average < 35ms                                                    |  |  |  |  |
| Sampling rate         | 1 finger touch   | 160 Hz(Typical)                                                   |  |  |  |  |
|                       | 5 fingers touch  | 100 Hz(Typical)                                                   |  |  |  |  |
| Operating voltag      | ge               | +5Vdc, ±5 %                                                       |  |  |  |  |
| Power                 | Working mode     | 60.7mA @ 5Vdc                                                     |  |  |  |  |
| consumption           | Idle mode        | 47.1mA @ 5Vdc                                                     |  |  |  |  |
|                       | Sleep mode       | 1.6mA @ 5Vdc                                                      |  |  |  |  |
| Operating temporating | erature          | -40°C ~ +85°C                                                     |  |  |  |  |
| Storage tempera       | ature            | -40°C ~ +85°C                                                     |  |  |  |  |
| Relative humidit      | y range          | 95% RH at 60°C. RH Non-condensing                                 |  |  |  |  |
| EMS                   | RS               | IEC61000-4-3 Level 3 , Criteria A, dual touch points              |  |  |  |  |
| specification         | CS               | IEC61000-4-6 Level 3 , Criteria A, dual touch points              |  |  |  |  |
| Watchdog Time         | r                | Support WDT function through firmware programming                 |  |  |  |  |

#### Note:

CS and RS performance, Power consumption and sample rate will vary according to different firmware versions.


> Website: <a href="http://www.penmount.com">http://www.penmount.com</a> E-mail: penmount@seed.net.tw



# 3.0 Mechanical Drawing

### 3.1 Mechanical size





# Pen Nount PM1711 PCI Controller Board Data Sheet

# 3.2 Touch line pin definition

| JL3 8 | JL3 80Pin ZIF , PH 0.5mm ; HRS FH28H-80S-0.5SH |     |               |     |               |     |               |  |  |
|-------|------------------------------------------------|-----|---------------|-----|---------------|-----|---------------|--|--|
| PIN   | Description                                    | PIN | Description   | PIN | Description   | PIN | Description   |  |  |
| 1     | GND                                            | 21  | Cap Drive X18 | 41  | Cap Drive X38 | 61  | Cap Drive X58 |  |  |
| 2     | GND                                            | 22  | Cap Drive X19 | 42  | Cap Drive X39 | 62  | Cap Drive X59 |  |  |
| 3     | Cap Drive X0                                   | 23  | Cap Drive X20 | 43  | Cap Drive X40 | 63  | Cap Drive X60 |  |  |
| 4     | Cap Drive X1                                   | 24  | Cap Drive X21 | 44  | Cap Drive X41 | 64  | Cap Drive X61 |  |  |
| 5     | Cap Drive X2                                   | 25  | Cap Drive X22 | 45  | Cap Drive X42 | 65  | Cap Drive X62 |  |  |
| 6     | Cap Drive X3                                   | 26  | Cap Drive X23 | 46  | Cap Drive X43 | 66  | Cap Drive X63 |  |  |
| 7     | Cap Drive X4                                   | 27  | Cap Drive X24 | 47  | Cap Drive X44 | 67  | Cap Drive X64 |  |  |
| 8     | Cap Drive X5                                   | 28  | Cap Drive X25 | 48  | Cap Drive X45 | 68  | Cap Drive X65 |  |  |
| 9     | Cap Drive X6                                   | 29  | Cap Drive X26 | 49  | Cap Drive X46 | 69  | Cap Drive X66 |  |  |
| 10    | Cap Drive X7                                   | 30  | Cap Drive X27 | 50  | Cap Drive X47 | 70  | Cap Drive X67 |  |  |
| 11    | Cap Drive X8                                   | 31  | Cap Drive X28 | 51  | Cap Drive X48 | 71  | Cap Drive X68 |  |  |
| 12    | Cap Drive X9                                   | 32  | Cap Drive X29 | 52  | Cap Drive X49 | 72  | Cap Drive X69 |  |  |
| 13    | Cap Drive X10                                  | 33  | Cap Drive X30 | 53  | Cap Drive X50 | 73  | Cap Drive X70 |  |  |
| 14    | Cap Drive X11                                  | 34  | Cap Drive X31 | 54  | Cap Drive X51 | 74  | Cap Drive X71 |  |  |
| 15    | Cap Drive X12                                  | 35  | Cap Drive X32 | 55  | Cap Drive X52 | 75  | Cap Drive X72 |  |  |
| 16    | Cap Drive X13                                  | 36  | Cap Drive X33 | 56  | Cap Drive X53 | 76  | Cap Drive X73 |  |  |
| 17    | Cap Drive X14                                  | 37  | Cap Drive X34 | 57  | Cap Drive X54 | 77  | Cap Drive X74 |  |  |
| 18    | Cap Drive X15                                  | 38  | Cap Drive X35 | 58  | Cap Drive X55 | 78  | Cap Drive X75 |  |  |
| 19    | Cap Drive X16                                  | 39  | Cap Drive X36 | 59  | Cap Drive X56 | 79  | NC            |  |  |
| 20    | Cap Drive X17                                  | 40  | Cap Drive X37 | 60  | Cap Drive X57 | 80  | GND           |  |  |

| JL2 | JL2 50Pin ZIF , PH 0.5mm ; HRS FH28D-50S-0.5SH |     |               |     |               |     |               |     |              |
|-----|------------------------------------------------|-----|---------------|-----|---------------|-----|---------------|-----|--------------|
| PIN | Description                                    | PIN | Description   | PIN | Description   | PIN | Description   | PIN | Description  |
| 1   | GND                                            | 11  | Cap Sense Y35 | 21  | Cap Sense Y25 | 31  | Cap Sense Y15 | 41  | Cap Sense Y5 |
| 2   | NC                                             | 12  | Cap Sense Y34 | 22  | Cap Sense Y24 | 32  | Cap Sense Y14 | 42  | Cap Sense Y4 |
| 3   | Cap Sense Y43                                  | 13  | Cap Sense Y33 | 23  | Cap Sense Y23 | 33  | Cap Sense Y13 | 43  | Cap Sense Y3 |
| 4   | Cap Sense Y42                                  | 14  | Cap Sense Y32 | 24  | Cap Sense Y22 | 34  | Cap Sense Y12 | 44  | Cap Sense Y2 |
| 5   | Cap Sense Y41                                  | 15  | Cap Sense Y31 | 25  | Cap Sense Y21 | 35  | Cap Sense Y11 | 45  | Cap Sense Y1 |
| 6   | Cap Sense Y40                                  | 16  | Cap Sense Y30 | 26  | Cap Sense Y20 | 36  | Cap Sense Y10 | 46  | Cap Sense Y0 |
| 7   | Cap Sense Y39                                  | 17  | Cap Sense Y29 | 27  | Cap Sense Y19 | 37  | Cap Sense Y9  | 47  | NC           |
| 8   | Cap Sense Y38                                  | 18  | Cap Sense Y28 | 28  | Cap Sense Y18 | 38  | Cap Sense Y8  | 48  | NC           |
| 9   | Cap Sense Y37                                  | 19  | Cap Sense Y27 | 29  | Cap Sense Y17 | 39  | Cap Sense Y7  | 49  | NC           |
| 10  | Cap Sense Y36                                  | 20  | Cap Sense Y26 | 30  | Cap Sense Y16 | 40  | Cap Sense Y6  | 50  | GND          |



# 3.3 Interface pin definition

PM1711 includes USB/I2C/UART communication interfaces, intends to maximize application flexibility and reliability, and minimizes cost through elimination of external components.

| JL1 / 4PIN / ACES 50224-00401-001 |     |                                    |     |     |     |      |  |  |  |
|-----------------------------------|-----|------------------------------------|-----|-----|-----|------|--|--|--|
| PIN NO.                           | USB | Description                        | Min | Тур | Max | Unit |  |  |  |
| 1                                 | VCC | Positive power supply 5            |     |     |     | V    |  |  |  |
| 2                                 | D-  | D- pin of internal USB transceiver |     | 3.3 |     | V    |  |  |  |
| 3                                 | D+  | D+ pin of internal USB transceiver |     | 3.3 |     | V    |  |  |  |
| 4                                 | GND | Ground                             |     | 0   |     | V    |  |  |  |

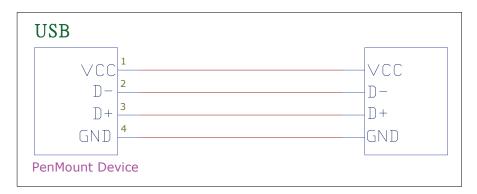



Figure 1 USB interface

Low



nINT

#### JL4 / 7PIN; ACES 50224-00701-001 **PIN ASSIGNMENT** PIN NO. SYMBOL $I^2C$ **UART** VCC VCC 1 VCC 2 **GND** Ground Ground 3 SCL / RXD SCL **RXD** 4 SDA / TXD **SDA** TXD N.C. 5 nRESET N.C. 6 nDetect Low Low 7 nINT

| PIN NO. | Туре | Description                                     | Min | Тур | Max | Unit |
|---------|------|-------------------------------------------------|-----|-----|-----|------|
| VCC     | Р    | Positive power supply                           |     | 5   |     | V    |
| GND     | Р    | Ground                                          |     | 0   |     | V    |
| SCL     | 1/0  | Serial clock line for I2C. Open drain requires  |     | 3.3 |     | V    |
|         |      | external pull-up to 3.3V                        |     |     |     |      |
| SDA     | 1/0  | Serial data line for I2C. Open drain requires   |     | 3.3 |     | V    |
|         |      | external pull-up to 3.3V.                       |     |     |     |      |
| RXD     | l    | UART receive                                    |     | 3.3 |     | V    |
| TXD     | 0    | UART transmit                                   |     | 3.3 |     | V    |
| nRESET  | I    | Open-drain and active low to reset PM1711       |     |     |     | V    |
|         |      | and must be driven low for 5 µs (typical) to be |     |     |     |      |
|         |      | valid. Leave the pin unconnected if not used.   |     |     |     |      |
| nDETECT | 1    | Pull low when selecting I2C or UART interface   |     | 0   |     | V    |
| nINT    | 0    | Processor Interrupt. This pin is active low,    |     | 3.3 |     | V    |
|         |      | open drain requires external pull-up to 3.3V.   |     |     |     |      |

Website: <a href="http://www.penmount.com">http://www.penmount.com</a> E-mail: penmount@seed.net.tw



# I2C VCC 3.3V 2.2K≥ 2.2K≥ 2.2K≥ GND GND SCL SCL SDA SDA nINT PenMount Device

Figure 212C interface

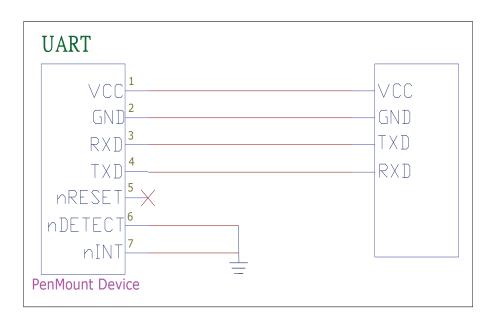
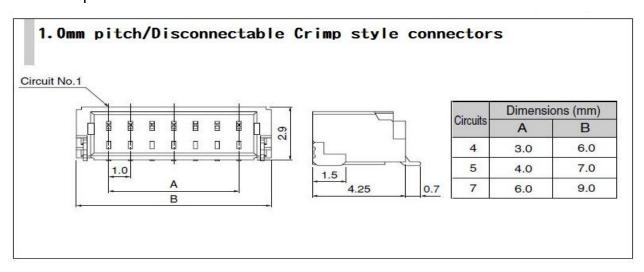




Figure 3 UART interface



# 3.4 Connector specifications



Website: <a href="http://www.penmount.com">http://www.penmount.com</a> E-mail: penmount@seed.net.tw

# 4.0 Drivers and utilities

### 4.1 Drivers

#### For I<sup>2</sup>C:

- Windows CE: Binary driver for freescale iMX platform. Other platform by request.
- Linux / Android : Source code for integration.

#### For USB

- Windows 2000, XP, 2003: single touch, mouse driver.
- Windows Vista: single touch, inbox driver.
- Windows 7,8,10: five touch, Inbox driver.
- Linux: Ubuntu, Android, other versions of Linux support, please refer PenMount website

#### For UART

- Windows 2000, XP, 2003: single touch, mouse driver.
- Windows Vista: single touch, digitizer driver.
- Windows 7,8,10: 5 touches support, digitizer driver.
- Linux: inbox driver after kernel 3.2, provide source code for kernel 2.6

(Provide source code for integration if any)

#### 4.2 Utilities

Firmware adjustment utility allows user to fine tune the touch panel sensitivity.

#### Note:

All drivers and utilities are available on PenMount websites. Please contact us for further information.



# 5.1 ROHS compliance

This control board is ROHS compliant

## 5.2 EMC protection recommendations

Please refer to PCI touch screen integration guides.

### 5.3 Noise protection

To achieve good noise interference protection capabilities, PenMount requires paired interface cables possess comprehensive EMI shielding.

The cable should have a woven or spirally copper shield with 360° shield coverage The shield must be terminated to the receptacle and be connected to ground plane carefully.

Below is an example for 4-pin USB cable diagram. For other implementation, please follow the same design rules.

| PIN1 P1                                                                     | \$ 2    | PIN1<br>P2 |
|-----------------------------------------------------------------------------|---------|------------|
|                                                                             |         |            |
|                                                                             | Color   | P1 P2      |
|                                                                             | RED     | 11         |
| Remark:                                                                     | WHITE   | 2 2        |
| 1.Test Conditions                                                           | GREEN   | 3          |
| a. Conductor Resistance: $2\Omega$<br>b. Insulation Resistance: $10M\Omega$ | BLACK   | 4 — 4      |
| c. Insulation Testing:DC 300V                                               | GND GNI | D CASE     |